Jean-Baptiste WAHL

BIRTH:	03/26/1986 Strasbourg, France	EMAIL:	wahl@math.unistra.fr
PHONE:	$+33\ 3\ 68\ 85\ 02\ 19\ \ +33\ 6\ 85\ 56\ 42\ 48$	LinkedIn	linkedin.com/in/jb-wahl
ADDRESS:	IRMA, UMR 7501	GITHUB	github.com/jbwahl
	7 rue René-Descartes Strasbourg, France	PERSONAL PAGE	jwahl.perso.math.cnrs.fr

Positions

2017-present	 Research Engineer on the Eye2Brain / MSO4SC Projects at CEMOSIS, Strasbourg, France Development of new models to quantitatively describe metabolic connections between the eye and the brain. 3D/0D coupling between Feel++ and OpenModelica HPC and cloud technology: MSO4SC project
2014-present	 Active Developer in the Feel++ Project An open source finite element library Main developer on the reduced basis framework (C++) Parallel programming and HPC Scientific computing, Linear algebra, Numerical algorithms
Formation	
2014-present	 Ph.D.: The Reduced Basis Method Applied to Aerothermal Simulations at University of Strasbourg, France Aerothermal simulations (finite element method, coupled non-linear system) Implementation: Stabilization methods and turbulence model in Feel++ Model order reduction: Reduced Basis Method for non-linear problems
2012-2014	Master degree in Applied Mathematics at University of Strasbourg, France
Skills	

COMPUTER SCIENCE

- Advanced C++ skills: meta-programming, MPI, scientific computing
- Daily Use: cmake, boost, git, openmp, LATEX, Unix systems
- Basics: python, slurm, java, html, matlab, fortran, docker, singularity

APPLIED MATHEMATICS

- Modeling: finite element method, CFD, coupled systems
- Linear Algebra: preconditioning methods, iterative solvers
- **Model Order Reduction**: Certified reduced basis, proper orthogonal decomposition, Proper generalized decomposition

MISCELLANEOUS

- Linguistics: French (mother tongue), English

Publications

in preparation	Review and Implementation of Streamline Diffusion Methods on Anisotropic Meshes, Application to Aerothermal Simulations with C. Prud'homme
in preparation	Implementation of RANS models in Feel++ library with C. Prud'homme, Y. Hoarau, V. Chabannes
in preparation	Simultaneous EIM and RB Construction for Non-linear Operators, Application to Aerothermal Problems with C. Prud'homme, V. Chabannes

Talks and Seminars

2018	ECMI , Budapest, Hungary Simultaneous EIM and RB Construction for Non-linear Operators, Application to Aerothermal Problems
2018	MoRePaS , Nantes, France High Reynolds Aerothermal Simulations and Reduced Basis
2017	Feel++ Users Days , Strasbourg, France Aerothermal Simulation and Model Order Reduction, Using the Open-Source Framework Feel++
2018	ANR CHORUS Workshop , Paris, France Model Order Reduction for Multi-physic Problems, Using the Open-Source Framework Feel++
2017	A3F, Strasbourg, France Aerothermal Simulation and Model Order Reduction, using the Open-Source Framework Feel++
2015	SimRace , Paris, France Solving Strategy for Large Scale Aerothermal Simulation using the Open-Source Framework Feel++
2015	Feel++ Users Days , Strasbourg, France Aerothermal Simulations : Towards Reduced Basis Applications
2014	Research Group on Model Order Reduction, Porquerolles, France

Teaching

2015-present	Tutorials of mathematics in highly selective classes to prepare for the competitive exams to the French "Grandes Ecoles"
2014-2017	Lesson-Tuition of analysis, L1 Sciences

Research Areas

Numerical analysis, Numerical method for partial differential equations, Model order reduction, Computational fluid dynamic, Mathematical model applied to medicine, Finite element method, HPC computing